feat: add a more practical example course
This commit is contained in:
33
exampleSite/content/courses/example/stats.md
Normal file
33
exampleSite/content/courses/example/stats.md
Normal file
@@ -0,0 +1,33 @@
|
||||
---
|
||||
title: Statistics
|
||||
date: '2021-01-01'
|
||||
type: book
|
||||
weight: 40
|
||||
math: true
|
||||
---
|
||||
|
||||
Introduction to statistics for data science.
|
||||
|
||||
<!--more-->
|
||||
|
||||
{{< icon name="clock" pack="fas" >}} 1-2 hours per week, for 8 weeks
|
||||
|
||||
## Learn
|
||||
|
||||
The general form of the **normal** probability density function is:
|
||||
|
||||
$$
|
||||
f(x) = \frac{1}{\sigma \sqrt{2\pi} } e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}
|
||||
$$
|
||||
|
||||
{{< callout note >}}
|
||||
The parameter $\mu$ is the mean or expectation of the distribution.
|
||||
$\sigma$ is its standard deviation.
|
||||
The variance of the distribution is $\sigma^{2}$.
|
||||
{{< /callout >}}
|
||||
|
||||
## Quiz
|
||||
|
||||
{{< spoiler text="What is the parameter $\mu$?" >}}
|
||||
The parameter $\mu$ is the mean or expectation of the distribution.
|
||||
{{< /spoiler >}}
|
||||
Reference in New Issue
Block a user